Abstract
Enabled by wearable sensing, e.g., photoplethysmography (PPG) and electrocardiography (ECG), and machine learning techniques, study on cuffless blood pressure (BP) measurement with data-driven methods has become popular in recent years. However, causality has been overlooked in most of current studies. In this study, we aim to examine the feasibility of causal inference for cuffless BP estimation. We first attempt to detect wearable features that are causally related, rather than correlated, to BP changes by identifying causal graphs of interested variables with fast causal inference (FCI) algorithm. With identified causal features, we then employ time-lagged link to integrate the mechanism of causal inference into the BP estimated model. The proposed method was validated on 62 subjects with their continuous ECG, PPG and BP signals being collected. We found new causal features that can better track BP changes than pulse transit time (PTT). Further, the developed causal-based estimation model achieved an estimation error of mean absolute difference (MAD) being 5.10 mmHg and 2.85 mmHg for SBP and DBP, respectively, which outperformed traditional model without consideration of causality. To the best of our knowledge, this work is the first to study the causal inference for cuffless BP estimation, which can shed light on the mechanism, method and application of cuffless BP measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.