Abstract

I introduce a temporal belief-network representation of causal independence that a knowledge engineer can use to elicit probabilistic models. Like the current, atemporal belief-network representation of causal independence, the new representation makes knowledge acquisition tractable. Unlike the atemproal representation, however, the temporal representation can simplify inference, and does not require the use of unobservable variables. The representation is less general than is the atemporal representation, but appears to be useful for many practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.