Abstract

In this paper, we consider fermionic systems in discrete spacetime evolving with a strict notion of causality, meaning they evolve unitarily and with a bounded propagation speed. First, we show that the evolution of these systems has a natural decomposition into a product of local unitaries, which also holds if we include bosons. Next, we show that causal evolution of fermions in discrete spacetime can also be viewed as the causal evolution of a lattice of qubits, meaning these systems can be viewed as quantum cellular automata. Following this, we discuss some examples of causal fermionic models in discrete spacetime that become interesting physical systems in the continuum limit: Dirac fermions in one and three spatial dimensions, Dirac fields and briefly the Thirring model. Finally, we show that the dynamics of causal fermions in discrete spacetime can be efficiently simulated on a quantum computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.