Abstract

While targeted systemic inflammatory modulators show promise in preventing chronic kidney disease (CKD) progression, the causal link between specific inflammatory factors and CKD remains uncertain. Using a genome-wide association study of 41 serum cytokines from 8,293 Finnish individuals, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis. In addition, we genetically predicted causal associations between inflammatory factors and 5 phenotypes, including CKD, estimated glomerular filtration rate (eGFR), dialysis, rapid progression of CKD, and rapid decline in eGFR. Inverse variance weighting (IVW) served as the primary MR method, while MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO) were utilized for sensitivity analysis. Cochrane's Q test for heterogeneity. Leave-one-out method ensured stability of MR results, and Bonferroni correction assessed causal relationship strength. Seventeen cytokines were associated with diverse renal outcomes. Among them, after Bonferroni correction test, higher tumor necrosis factor alpha levels were associated with a rapid decrease in eGFR (OR = 1.064, 95% CI 1.028 - 1.103, P = 0.001), higher interleukin-4 levels were associated with an increase in eGFR (β = 0.003, 95% CI 0.001 - 0.005, P = 0.002), and higher growth regulated oncogene alpha (GROα) levels were associated with an increased risk of CKD (OR=1.035, 95% CI 1.012 - 1.058, P = 0.003). In contrast, genetic susceptibility to CKD was associated with an increase in GROa, and a decrease in eGFR may lead to an increase in stem cell factor. We did not find the presence of horizontal pleiotropy during the analysis. We discovered causally related inflammatory factors that contribute to the initiation and progression of CKD at the genetic prediction level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call