Abstract

It remains uncertain whether there is a causal association of the use of beta-blockers (BBs) on lung cancer risk. We used a two-sample Mendelian randomization (MR) approach to identify the causal association of BBs and lung cancer risk. Twenty-two BB-related single-nucleotide polymorphisms (SNPs) were obtained from the UK Biobank as the instrumental variables (IVs). Genetic summary data information of lung cancer was extracted from the International Lung Cancer Consortium, with a total of 11,348 cases and 15,861 controls. We adopted the inverse-variance weighted (IVW) approach to conduct the MR analyses. Egger-intercept analysis was further performed as sensitivity analysis for pleiotropy evaluation. Additionally, we investigated whether BBs could causally affect the risk of lung cancer through their pharmacological effects. The current IVW analysis suggested a decreased lung cancer risk in BB users [odds ratio (OR) =0.83; 95% confidence interval (CI): 0.73-0.95; P<0.01]. Results of Egger-intercept analysis demonstrated that no pleiotropy was found (P=0.94), which suggested the robustness of the causality. However, there was little evidence that pharmacological effects mediate the association between BBs and lung cancer. The current analysis suggested that BBs could decrease the risk of lung cancer but may be not via its pharmacological effects. Further research is in need for elucidating the underlying mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call