Abstract

Complex behaviour emerges from interactions between objects produced by different generating mechanisms. Yet to decode their causal origin(s) from observations remains one of the most fundamental challenges in science. Here we introduce a universal, unsupervised and parameter-free model-oriented approach, based on the seminal concept and the first principles of algorithmic probability, to decompose an observation into its most likely algorithmic generative models. Our approach uses a perturbation-based causal calculus to infer model representations. We demonstrate its ability to deconvolve interacting mechanisms regardless of whether the resultant objects are bit strings, space–time evolution diagrams, images or networks. Although this is mostly a conceptual contribution and an algorithmic framework, we also provide numerical evidence evaluating the ability of our methods to extract models from data produced by discrete dynamical systems such as cellular automata and complex networks. We think that these separating techniques can contribute to tackling the challenge of causation, thus complementing statistically oriented approaches. Most machine learning approaches extract statistical features from data, rather than the underlying causal mechanisms. A different approach analyses information in a general way by extracting recursive patterns from data using generative models under the paradigm of computability and algorithmic information theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.