Abstract
When we compare the influences of two causes on an outcome, if the conclusion from every group is against that from the conflation, we think there is Simpson's Paradox. The Existing Causal Inference Theory (ECIT) can make the overall conclusion consistent with the grouping conclusion by removing the confounder's influence to eliminate the paradox. The ECIT uses relative risk difference Pd = max(0, (R - 1)/R) (R denotes the risk ratio) as the probability of causation. In contrast, Philosopher Fitelson uses confirmation measure D (posterior probability minus prior probability) to measure the strength of causation. Fitelson concludes that from the perspective of Bayesian confirmation, we should directly accept the overall conclusion without considering the paradox. The author proposed a Bayesian confirmation measure b* similar to Pd before. To overcome the contradiction between the ECIT and Bayesian confirmation, the author uses the semantic information method with the minimum cross-entropy criterion to deduce causal confirmation measure Cc = (R - 1)/max(R, 1). Cc is like Pd but has normalizing property (between -1 and 1) and cause symmetry. It especially fits cases where a cause restrains an outcome, such as the COVID-19 vaccine controlling the infection. Some examples (about kidney stone treatments and COVID-19) reveal that Pd and Cc are more reasonable than D; Cc is more useful than Pd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.