Abstract

We consider polyhedra and 4-polytopes in Minkowski spacetime—in particular, null polyhedra with zero volume, and 4-polytopes that have such polyhedra as their hyperfaces. We present the basic properties of several classes of null-faced 4-polytopes: 4-simplices, “tetrahedral diamonds” and 4-parallelotopes. We propose a “most regular” representative of each class. The most-regular parallelotope is of particular interest: its edges, faces and hyperfaces are all congruent, and it features both null hyperplanes and null segments. A tiling of spacetime with copies of this polytope can be viewed alternatively as a lattice with null edges, such that each point is at the intersection of four lightrays in a tetrahedral pattern. We speculate on the relevance of this construct for discretizations of curved spacetime and for quantum gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.