Abstract

Wildfire risks and losses have increased over the last 100 years, associated with population expansion, land use and management practices, and global climate change. While there have been extensive efforts at modeling the probability and severity of wildfires, there have been fewer efforts to examine causal linkages from wildfires to impacts on ecological receptors and critical habitats. Bayesian networks are probabilistic tools for graphing and evaluating causal knowledge and uncertainties in complex systems that have seen only limited application to the quantitative assessment of ecological risks and impacts of wildfires. Here, we explore opportunities for using Bayesian networks for assessing wildfire impacts to ecological systems through levels of causal representation and scenario examination. Ultimately, Bayesian networks may facilitate understanding the factors contributing to ecological impacts, and the prediction and assessment of wildfire risks to ecosystems. Integr Environ Assess Manag 2021;17:1168-1178. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.