Abstract

The method presented by T. Katayama and T. Hirai (1990), who considered the problem of semicausal autoregressive (AR) parameter identification for images degraded by observation noise, is extended. In particular, an approach to identifying both the causal and semicausal AR parameters without a priori knowledge of the observation noise power is proposed. The image is decomposed into 1-D independent complex scalar subsystems resulting from the vector state-space model, using the unitary discrete Fourier transform (DFT). Then the expectation-maximization algorithm is applied to each subsystem to identify the AR parameters of the transformed image. The AR parameters of the original image are then identified using the least-square method. The restored image is obtained as a byproduct of the EM algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.