Abstract

Three-dimensional (3D) cauliflower-shaped Strontium (Sr)-doped SnO2 nanoparticles were synthesised at ambient temperature through a simple co-precipitation technique. The 3D cauliflower-shaped 7 wt-% Sr-doped SnO2 nanoparticles increase light harvesting features and also promote electron transport across grain boundaries. 3D cauliflower-shaped Sr-doped SnO2 nanoparticles offer low charge transfer resistance, which is validated by the electrochemical impedance spectroscopy spectrum. XRD studies of SnO2 and Sr-doped SnO2 have revealed a tetragonal structure, and PL spectra corroborate the greater charge splitting. This study may be the first ever report on the 3D microstructure of cauliflower-shaped 7 wt-% Sr-doped SnO2 nanoparticles that demonstrated higher photocatalytic activity under visible-light for MB dye solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call