Abstract
Some mean-value theorems of the Cauchy type, which are connected with Jensen's inequality, are given in \cite{Mercer2} in discrete form and in \cite{PPSri} in integral form. Here we give the generalization of that result for positive linear functionals. Using that result, new means of Cauchy type for positive linear functionals are given. Monotonicity of these new means is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.