Abstract

We solve Cauchy problems for discrete holomorphic functions defined on the Gaussian integers, which leads to the existence of discrete holomorphic functions with arbitrarily fast growth. This proves that certain classes of functions are closed in the sense of mathematical morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.