Abstract
We consider the Cauchy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modeling of motions for shallow water with free surface in a rotating sub-domain Marche (2007) [19]. The global existence of the solution in the space of Besov type is shown for initial data close to a constant equilibrium state away from the vacuum. Unlike the previous analysis about the compressible fluid model without Coriolis forces, see for instance Danchin (2000) [10], Haspot (2009) [16], the rotating effect causes a coupling between two parts of Hodge's decomposition of the velocity vector field, and additional regularity is required in order to carry out the Friedrichs' regularization and compactness arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.