Abstract

The use of Cauchy Markov random field priors in statistical inverse problems can potentially lead to posterior distributions which are non-Gaussian, high-dimensional, multimodal and heavy-tailed. In order to use such priors successfully, sophisticated optimization and Markov chain Monte Carlo methods are usually required. In this paper, our focus is largely on reviewing recently developed Cauchy difference priors, while introducing interesting new variants, whilst providing a comparison. We firstly propose a one-dimensional second-order Cauchy difference prior, and construct new first- and second-order two-dimensional isotropic Cauchy difference priors. Another new Cauchy prior is based on the stochastic partial differential equation approach, derived from Matérn type Gaussian presentation. The comparison also includes Cauchy sheets. Our numerical computations are based on both maximum a posteriori and conditional mean estimation. We exploit state-of-the-art MCMC methodologies such as Metropolis-within-Gibbs, Repelling-Attracting Metropolis, and No-U-Turn sampler variant of Hamiltonian Monte Carlo. We demonstrate the models and methods constructed for one-dimensional and two-dimensional deconvolution problems. Thorough MCMC statistics are provided for all test cases, including potential scale reduction factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.