Abstract

Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arise from the discretization of certain ill-posed problems in signal and image processing. We use a preconditioned conjugate gradient algorithm to compute a regularized solution to this linear system given noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to a unitary transformation of the BTTB matrix. We show that the preconditioner has desirable properties when the kernel of the ill-posed problem is smooth: the largest singular values of the preconditioned matrix are clustered around one, the smallest singular values remain small, and the subspaces corresponding to the largest and smallest singular values, respectively, remain unmixed. For a system involving np variables, the preconditioned algorithm costs only O(np (lgn + lg p)) operations per iteration. We demonstrate the effectiveness of the preconditioner on three examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.