Abstract
In this paper, we study the Cauchy and Goursat problems of the spin-n/2 zero rest-mass equations on Minkowski spacetime by using the conformal geometric method. In our strategy, we prove the wellposedness of the Cauchy problem in Einstein’s cylinder. Then we establish pointwise decays of the fields and prove the energy equalities of the conformal fields between the null conformal boundaries and the hypersurface . Finally, we prove the wellposedness of the Goursat problem in the partial conformal compactification by using the energy equalities and the generalisation of Hörmander’s result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.