Abstract

Crop production on acid soils can be improved greatly by adjusting the pH to near neutrality. Although soil acidity is commonly corrected by liming, there is evidence that animal manure amendments can increase the pH of acid soils. Fresh cattle manure and agricultural lime were compared for their effects on soil acidity and the production of canola (Brassica napus L.) and wheat (Triticum aestivum L.) in a greenhouse study. Canola and wheat yield, the nutrient content of grain and straw, and selected soil properties were determined on a Gray Luvisol (pH 4.8) from the Peace Region of Alberta. Soil pH increased with lime and manure applications, and canola and wheat yields were higher in limed and manure-amended soils than unfertilized, unlimed soils. Macronutrient uptake by canola and wheat was generally improved by liming and manure applications, and micronutrient uptake was related to the effects of lime and manure on soil pH. An economic analysis compared the costs of using cattle manure and lime to increase soil pH to 6.0. The costs of applying lime and fresh cattle manure to increase soil pH were compared, based on the fees for purchasing and applying lime or loading, hauling and applying manure. The nutrient value of manure was calculated based on the quantities of plant-available N, P and K in fresh manure. At distances less than 40 km, it is economical to substitute fresh cattle manure for agricultural lime to increase soil pH of acidic soils. However, good manure management practices should be followed to minimize the risk of nutrient transport and environmental pollution from agricultural land amended with cattle manure. Key words: Agricultural economics, canola production, cattle manure, lime, soil pH, wheat prodution

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.