Abstract

AbstractThe present work investigates the thermophoresis and Brownian motion effects in nanofluid flow over a curved stretching sheet (CSS). Also, the Cattaneo–Christov heat flux and Stefan blowing (SB) conditions are considered for studying heat and mass transport characteristics. The present work's novelty is associated with considerations of convective boundary and SB conditions in nanomaterial flow over a CSS. The coupled partial differential equations are changed to ordinary differential equations by employing suitable similarity variables, and the resultant model is numerically handled using Runge–Kutta–Fehlberg's fourth fifth‐order method with the shooting scheme. The stimulation of the involved parameters/numbers on the flow, mass, and heat fields is broadly deliberated using suitable graphs. The present analysis's significant relevant outcomes are that the inclination in thermophoresis and Brownian motion parameters increases the heat transfer. The inclined values of the Brownian motion parameter decay the mass transfer. Furthermore, the increased values of both Schmidt number and SB parameter drop the mass transport. The increased values of the Brownian motion parameter and Schmidt number decays the rate of mass transference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.