Abstract
Many Ca(2+) channel proteins have been detected in mammalian sperm, but only the four CATSPER channels have been clearly shown to be required for male fertility. Ca(2+) entry through the principal piece-localized CATSPER channels has been implicated in the activation of hyperactivated motility. In the present study, we show that the Ca(2+) entry also triggers a tail-to-head Ca(2+) propagation in the mouse sperm. When activated with 8-Br-cAMP, 8-Br-cGMP, or alkaline depolarization, a CATSPER-dependent increase in intracellular Ca(2+) concentration starts in the principal piece, propagates through the midpiece, and reaches the head in a few seconds. The Ca(2+) propagation through the midpiece leads to a Ca(2+)-dependent increase in NADH fluorescence. In addition, CatSper1-mutant sperm have lower intracellular ATP levels than wild-type sperm. Thus, a Ca(2+) influx in the principal piece through CATSPER channels can not only initiate hyperactivated motility, but can also trigger a tail-to-head Ca(2+) propagation that leads to an increase in [NADH] and may regulate ATP homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.