Abstract

Pet cats may be used as a biomarker for assessing exposures to organohalogen compounds (OHCs) adsorbed to household dust in home environments. This study explores two exposure routes of OHCs, ingestion of OHCs (i) via house dust and (ii) via cat food. House dust from 17 Swedish homes and serum from the participating families' pet cats were collected, and cat food was purchased matching the diet reported. Paired samples of cat serum, house dust, and cat food were analyzed for brominated flame retardants/natural products (polybrominated diphenyl ethers (PBDEs), decabromobiphenyl (BB-209), decabromodiphenyl ethane (DBDPE), 2,4,6-tribromophenol (2,4,6-TBP), OH-PBDEs) and organochlorines (polychlorinated biphenyls (PCBs), 1,1-bis(4,4'-dichlorodiphenyl)-2,2,2-trichloroethane (4,4'-DDT), 1,1-bis(4,4'-dichlorodiphenyl)-2,2-dichloroethene (4,4'-DDE), hexachlorobenzene (HCB), pentachlorophenol (PCP)). Significant correlations were found between serum and dust samples from the living rooms for BDE-47 (p < 0.035), BDE-99 (p < 0.035), and BDE-153 (p < 0.039), from the adult's bedroom for BDE-99 (p < 0.019) and from all rooms for BDE-99 (p < 0.020) and BB-209 (p < 0.048). This is the first time a correlation between cat serum levels and household dust has been established, a finding that supports the hypothesis that dust is a significant exposure route for cats. Serum levels were also significantly correlated with concentrations found in cat food for 6-OH-BDE47 (p < 0.002), 2,4,6-TBP (p < 0.035), and BB-209 (p < 0.007). DBDPE was found in high concentrations in all dust (median 154 pmol/g) and food samples (median 0.7 pmol/g lw) but was below detection in serum samples, suggesting low or no bioavailability for DBDPE in cats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call