Abstract
Phosphorylation and dephosphorylation of the checkpoint kinase CaRad53 is crucial for fungal cells in response to genotoxic stresses. The protein phosphatase 2A (PP2A) CaPph3/CaPsy2 phosphatase complex is involved in CaRad53 dephosphorylation in Candida albicans. In view of the role of ScTip41/ScTap42 in regulating PP2A phosphatases in Saccharomyces cerevisiae, we have explored the function of CaTip41 in C. albicans. Here, we show that CaTIP41 is a functional ortholog of ScTIP41 in the sensitivity of S. cerevisiae cells to rapamycin. Deletion of CaTIP41 causes C. albicans cells to be sensitive to DNA damaging agents, methylmethane sulfonate (MMS) and cisplatin, and resistant to both rapamycin and caffeine. Accordingly, expression of CaTip41 increases in response to MMS and cisplatin. In addition, C. albicans cells lacking CaTIP41 show a delay in the recovery from MMS-induced filamentation to yeast form, decreased PP2A activity and a defect in deactivation of CaRad53 during recovery from DNA damage. Through yeast two-hybrid assay we show that CaTip41 interacts with either CaPph3, CaPsy2 or CaTap42. Therefore, CaTip41 plays regulatory roles in both the CaRad53 deactivation during recovery from DNA damage and the target of rapamycin signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: FEMS Yeast Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.