Abstract

The effects of cations stress of magnesium ion and sodium ion on the low-grade nickel sulfide ore oxidative leaching in simulated sulfuric acid solutions were investigated. This study was performed in two courses, including the effect of the cations on the valuable metals leaching efficiencies of the nickel ore and its influences on the electrochemical oxidation behavior of the nickel ore. The leaching results present that parts of magnesium-containing gangues and ferrous sulfide are preferentially dissolved into lixivium, and the leaching efficiencies of Ni and Cu decreased much related to the leached concentrations of Mg2+ increased. The results of electrochemical measurements show that the oxidation leaching of the low-grade nickel sulfide ore is controlled by the intermediates oxidative diffusion. Mg2+, as well as Na+, affects the transformations of the Fe3+/Fe2+ couple and sulfur-containing species, and those cations are apt to be attracted by the anions and directionally adhere to the negative active site of the metal sulfide surface, causing an increase in the electrochemical activities, which facilitates the electron transfer between the ore and leaching mediums. By comparative study of the role of Mg2+ and Na+, it is found that Mg2+ negatively affects the oxidative diffusion of the intermediates through promoting the generation of a compact film, which lowers the metals leached efficiencies, and the unfavorable effect of Na+ tends to be the coupled effect of the leached Mg2+ and Fe3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call