Abstract

For heparan sulfate (HS) to bind and regulate the activity of proteins, the polysaccharide must present an appropriate sequence and adopt a suitable conformation. The conformations of heparin derivatives, as models of HS, are altered via a change in the associated cations, and this can drastically modify their FGF signaling activities. Here, we report that changing the cations associated with an N-acetyl-enriched heparin polysaccharide, from sodium to copper(II), converted it from supporting signaling through the fibroblast growth factor receptor (FGF-1-FGFR1c) tyrosine kinase signaling system to being inhibitory in a cell-based BaF3 assay. Nuclear magnetic resonance and synchrotron radiation circular dichroism (SRCD) spectroscopy demonstrated that the polysaccharide conformation differed in the presence of sodium or copper(II) cations. Electron paramagnetic resonance confirmed the environment of the copper(II) ion on the N-acetyl-enriched polysaccharide was distinct from that previously observed with intact heparin, which supported signaling. Secondary structures in solution complexes of polysaccharides with FGF-1 (which either supported signaling through FGFR1c or were inhibitory) were determined by SRCD. This allowed direct comparison of the two FGF-1-polysaccharide complexes in solution, containing identical molecular components and differing only in their cation content. Subtle structural differences were revealed, including a reduction in the level of disordered structure in the inhibitory complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call