Abstract
In this study, highly functional cationically modified nanocrystalline cellulose (NCC)/carboxyl-functionalized graphene quantum dots (CGQD) has been described. The surface of NCC was first modified with hexadecyltrimethylammonium bromide (CTA) before combining with CGQD. The CGQD, CTA-NCC and CTA-NCC/CGQD nanocomposites thin films were prepared using spin coating technique. The obtained nanocomposite thin films were then characterized by using the Fourier transform infrared spectroscopy (FTIR) which confirmed the existence of hydroxyl groups, carboxyl groups and alkyl groups in CTA-NCC/CGQD. The optical properties of the thin films were characterized using UV–Vis spectroscopy. The absorption of CTA-NCC/CGQD was high with an optical band gap of 4.127 eV. On the other hand, the CTA-NCC/CGQD nanocomposite thin film showed positive responses towards glucose solution of different concentration using an optical method based on surface plasmon resonance phenomenon. This work suggests that the novel nanocomposite thin film has potential for a sensing application in glucose detection.
Highlights
In recent years, there has been an interest in the production of nanocrystalline cellulose (NCC) from cellulosic material because of its biodegradability, renewability, abundance and excellent mechanical properties [1]
Solution (0.1 wt%) was purchased from ACS Material (Pasadena, CA, USA) and glucose was purchased from R&M Marketing (Essex, UK)
To prepare NCC solution, 1 g of NCC was diluted in 100 mL deionized water
Summary
There has been an interest in the production of nanocrystalline cellulose (NCC) from cellulosic material because of its biodegradability, renewability, abundance and excellent mechanical properties [1]. In this world, cellulose is one of the most numerous natural renewable and biodegradable polysaccharides. NCC is obtained when cellulose undergoes acid hydrolysis with conditions where the amorphous regions are selectively hydrolyzed [4]. Mineral acids including hydrochloric acid and sulfuric acid are used in the mixture of hydrolysis of cellulose to prepare NCC [5]. NCC is constitutively acidic and exhibits a lyotropic phase behavior
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.