Abstract

Zinc has been an element of choice for carbon dioxide reduction in recent years. Zinc compounds have been showcased as catalysts for carbon dioxide hydrosilylation and hydroboration. The extent of carbon dioxide reduction can depend on various factors, including electrophilicity at the zinc center and the denticity of the ancillary ligands. In a few cases, the addition of Lewis acids to zinc hydride catalysts markedly influences carbon dioxide reduction. These factors have been investigated by exploring elementary reactions of carbon dioxide hydrosilylation and hydroboration by using cationic zinc hydrides bearing tetradentate tris[2-(dimethylamino)ethyl]amine and tridentate N,N,N',N'',N''-pentamethyldiethylenetriamine in the presence of triphenylborane and tris(pentafluorophenyl)borane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call