Abstract

Organopnictogen cations show promise as powerful, tunable main-group Lewis acid catalysts. The synthesis, solid-state structures, and reactivity of a series of weakly coordinated triarylchlorostibonium salts [Ar3SbCl][B(C6F5)4] (Ar = Ph, 3-FC6H4, 4-FC6H4, 3,5-F2C6H3, 2,4,6-F3C6H2) are reported. The cation in each adopts a tetrahedral coordination environment of antimony, with near complete separation from the anion. Structural, computational, and reactivity studies reveal that the Lewis acidity of [Ar3SbCl]+ generally increases with increased fluorination of the Ar substituents, with a secondary quenching effect from para fluorination. [Ar3SbCl]+ is reduced to Ar3Sb in the presence of Et3SiH, and the mechanism of this reaction has been modeled computationally. Preliminary studies demonstrate that they are useful catalysts for the dimerization of 1,1-diphenylethylene and the Friedel-Crafts alkylation of benzene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call