Abstract

Low density lipoprotein (LDL) plays an important role in transporting fat molecules including cholesterols in the body. In this work, cationic solid lipid nanoparticles (CSLNs), bioinspired and reconstituted from natural LDLs, were designed and applied to target specific systemic delivery of connective tissue growth factor siRNA (siCTGF) for the treatment of liver fibrosis. They could form a nuclease-resistant stable nano-complex with siRNA, which was efficiently internalized into cells achieving targeted gene silencing in the presence of serum with a remarkably low cytotoxicity. After intravenous injection, CSLN/siCTGF complex was target specifically delivered to the liver and resulted in a significant reduction in collagen content and pro-fibrogenic factors like tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin-6 (IL-6), and CTGF with the dramatic improvement of patho-physiological symptoms in liver fibrosis model rats. The bio-distribution study by fluorescence bioimaging and single-photon emission computed tomography (SPECT) confirmed the target specific delivery and accumulation of CSLN/siCTGF complexes to the liver tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.