Abstract
Group 4 metallocene-mediated cationic ring-opening polymerizations of a series of lactones and cyclic carbonates, with different ring sizes ([Formula: see text]–8) have been theoretically studied. Using the “naked cation” approach in combination with density functional theory, the activated chain-end mechanism and the influence of transition metals, solvent and monomer ring size on the polymerizability were explored in detail. The results showed that the cationic metallocene–monomer complex, [catalyst][monomer][Formula: see text], is formed, generating cationic (carbocation ion) species responsible for polymer chain growth. We found that poor polymerizability of five-membered lactone and six-membered ring carbonate depends not only on the nature of the monomer ring size but also the relative stability of the complex, which was found to correlate well with the ring strain. Subsequently, several propagation steps take place through an SN2 reaction which involves ring opening of an active monomer, via alkyl–oxygen bond cleavage. Based on the computed activation energies of all metallocene systems, the first propagation was found to be the rate-determining step of the overall propagation and the hafnocene was found to be most active with the energy barrier of 17.6[Formula: see text]kcal/mol, followed by zirconocene (18.6[Formula: see text]kcal/mol) and titanocene (19.5[Formula: see text]kcal/mol), respectively. The mechanistic study may be applicable to the cationic ROP of lactides and other related monomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.