Abstract

Here we report the combined application of high-resolution solid-state 13C–CPMAS-NMR and FT-IR spectroscopy, elemental analysis, kinetic poisoning/active site counting, variable dielectric constant medium, and DFT computation to characterize the surface chemistry of a pyridylamido hafnium complex (Cat1, L1-HfMe2, L1 = 2,6-diisopropyl-N-{(2-isopropylphenyl)[6-(naphthalen-1-yl)pyridin-2-yl]methyl}aniline) adsorbed on Bronsted acidic sulfated zirconia (ZrS). The spectroscopic and DFT results indicate protonolytic formation of organohafnium cations having a largely electrostatic pyridylamido-Hf-CH3+···ZrS– interaction with elongated Hf···OZrS distances of ∼2.14 A. High-molecular-weight polyethylenes and ethylene/1-octene copolymers are obtained with this supported catalyst without an activator/cocatalyst. The DFT calculations reveal that the first ethylene insertion into the Hf-methyl bond has a lower barrier than the corresponding insertion into the Hf-aryl bond of this single-site heterogeneous catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.