Abstract

We have previously reported that human eosinophil granule major basic protein and synthetic cationic proteins such as poly-L-arginine and poly-L-lysine, can increase airway responsiveness in vivo. In the present study, we have investigated whether activation of sensory C-fibers is important in this phenomenon. Dose-response curves to methacholine were constructed before and 1 h after intratracheal instillation of poly-L-lysine in anaesthetized spontaneously breathing rats, and the concentration of methacholine required to induce a doubling in total lung resistance was calculated. Poly-L-lysine induced a fivefold increase in airway responsiveness, which was inhibited by neonatal capsaicin treatment and potentiated by phosphoramidon (100 micrograms/ml). Furthermore, pretreatment with either CP, 96-345, or RP-67580 two selective NK-1 receptor antagonists inhibited poly-L-lysine-induced airway hyperresponsiveness and plasma protein extravasation. In vitro, cationic proteins stimulated the release of calcitonin gene-related peptide-like immunoreactivity from perfused slices of the main bronchi. Our results demonstrate that cationic proteins can activate sensory C-fibers in the airways, an effect which is important in the subsequent development of airway hyperresponsiveness and plasma protein extravasation. Cationic proteins may therefore function as a link between inflammatory cell accumulation and sensory nerve activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.