Abstract

G-quadruplex (GQ) architecture is adopted by guanine rich sequences, present throughout the eukaryotic genome including promoter locations and telomeric ends. The in vivo presence indicates their involvement and role in various biological processes. Various small ligands have been developed to interact and stabilize/destabilize G-quadruplex structures. Cationic porphyrins are among the most studied ligands, reported to bind and stabilize G-quadruplexes. Herein, we report the recognition and destabilization of a parallel G-quadruplex by porphyrins (TMPyP3 and TMPyP4). This G-quadruplex forming 23-nt G-rich sequence is in the promoter region of Human Myosin Heavy Chain β gene (MYH7β). Presence of various putative regulatory sequence elements (TATA Box, CCAAT, SP-1) located in the vicinity of this quadruplex motif, highlight its regulatory implications. Biophysical methods as Circular Dichroism Spectroscopy, UV-Absorption Spectroscopy, UV-Thermal Denaturation and Fluorescence Spectroscopy (steady as well as Time Resolved) have been used for studying the interaction and binding parameters. It is proposed that porphyrins have a destabilizing effect on the G-quadruplexes with parallel topology and a stronger binding specifically via intercalation mode is needed to cause destabilization. The study deals with better understanding and insights of DNA-Drug interactions in biological systems.Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.