Abstract
Developing the delivery systems with high therapeutic efficacy and low side effects is of great interest and significance for anticancer therapy. Compared to the high cost in synthesizing new chemotherapeutic drugs, exploring the anticancer potentials of existing chemicals is more convenient and efficient. Sodium bicarbonate (BC), a simple inorganic salt, has shown its tumor inhibition capacity via regulating the acidity of tumor microenvironment. However, the effects of intracytoplasmic BC on tumor growth and the potentials of BC to serve as an anticancer agent are still unknown. Herein, we developed a BC-loaded cationic liposome system (BC-CLP) to deliver BC into the cytosol of cancer cells. The in vitro studies showed that the BC-CLP containing 1% BC (w/v) had a size of 112.9 nm and a zeta potential of 19.1 mV, which reduced the viability of the model cancer cells (human oral squamous cell carcinoma HSC-3 cells) to 13.7%. In contrast, the neutral BC-LP caused less than 50% viability reduction. We further found that BC-CLP released BC directly into cytoplasm via membrane fusion pathway rather than endocytosis, leading to the remarkable increase of cytosolic pH, which may contribute to the anticancer effect of BC-CLP. Our findings indicate that BC-CLP is a potential system for high-efficiency cancer therapy without causing drug-related side effects or resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.