Abstract
Addition of cationic lipids to plasmid DNA considerably increases the efficiency of transfection. The mechanism has not yet been elucidated. A possibility is that these compounds destabilize biological membranes (plasma, endosomal, lysosomal), facilitating the transfer of nucleic molecules through these membranes. We have investigated the problem by determining if a cationic lipid N-(1-(2,3-dioleoxy)propyl)- N, N, N,-trimethylammonium methyl-sulfate (DOTAP, Boehringer, Mannheim, Germany) affects the integrity of rat liver lysosomal membrane. We have measured the latency of β-galactosidase, a lysosomal enzyme, and found that incubation of lysosomes with low concentrations of DOTAP causes a striking increase in free activity of the hydrolase and even a release of the enzyme into the medium. This indicates that lysosomal membrane is deeply destabilized by the lipid. The phenomenon depends on pH, it is less pronounced at pH 5 than at pH 7.4. Anionic compounds, particularly anionic amphipathic lipids, can to some extent prevent this phenomenon. It can be observed with various cationic lipids. A possible explanation is that cationic liposomes interact with anionic lipids of lysosomal membrane, allowing a fusion between the lipid bilayers which results in a destabilization of the organelle membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.