Abstract

The term nanodisk (ND) describes reconstituted high-density lipoprotein particles that contain one or more exogenous bioactive agents. In the present study, ND were assembled from apolipoprotein A-I, the zwitterionic glycerophospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the synthetic cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). ND formulated at a DMPC:DMTAP ratio of 70:30 (by weight) were soluble in aqueous media. The particles generated were polydisperse, with diameters ranging from ∼20 to <50 nm. In nucleic acid binding studies, agarose gel retardation assays revealed that a synthetic 23-mer double-stranded oligonucleotide (dsOligo) bound to DMTAP containing ND but not to ND formulated with DMPC alone. Sucrose density gradient ultracentrifugation studies provided additional evidence for stable dsOligo binding to DMTAP-ND. Incubation of cultured hepatoma cells with DMTAP-ND complexed with a siRNA directed against glyceraldehyde 3-phosphate dehydrogenase showed 60% knockdown efficiency. Thus, incorporation of synthetic cationic lipid (i.e., DMTAP) to ND confers an ability to bind siRNA and the resulting complexes possess target gene knockdown activity in a cultured cell model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.