Abstract
Transplantation of pancreatic islets has great potential for treating Type I diabetes. Ex vivo gene therapy may promote re-vascularization or inhibit apoptosis of the islets and promote graft. In this study, we investigated the feasibility of non-viral gene delivery using Enhanced Green Fluorescent Protein (EGFP) and human Vascular Endothelial Growth Factor (hVEGF(165)) expression plasmids as model reporter and therapeutic genes. LipofectAMINE/pDNA and Superfect/pDNA complexes showed high transfection efficiency in rapidly dividing Jurkat cells, but low transfection in non-dividing human islets. LipofectAMINE/pCAGGS-hVEGF transfected islets showed relatively higher levels of hVEGF than in those transfected with LipofectAMINE/pCMS-EGFP complexes or 5% glucose. To exclude endogenously secreted hVEGF, real time RT-PCR experiment was repeated using pCAGGS vector-specific forward primer and hVEGF gene-specific reverse primer. In this case, both non-transfected islets and the islets transfected with LipofectAMINE/pCMS-EGFP complexes showed negligible amplification of hVEGF. On glucose challenge, insulin release from LipofectAMINE/pCAGGS-hVEGF transfected human islets increased from 10.78 +/- 4.56 to 65 +/- 5 ng/ml, suggesting little adverse effect on islet beta cell response to glucose challenge. The low transfection efficiency is due to the islets being a cluster of approximately 1000 non-dividing cells. This underscores the importance of experimentation with the actual human islets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.