Abstract
AbstractThe stereochemistry of shape‐persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application‐specific functionalities. Although methods exist for fabricating inherently chiral prism‐like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity‐oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism‐like cages via phosphonium‐containing foldamer‐catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic‐at‐cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral‐at‐cage molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.