Abstract

AbstractDespite rapid progress and wide applications of room temperature phosphorescence (RTP) materials, it is still a great challenge to optimize the RTP activity through rational structural design at a molecular level. Herein, a successful cationic engineering strategy is demonstrated to modulate the crystal flexibility achieving controllable RTP in a new pair of metal halides [APML]ZnCl4 ([APML] = N‐(3‐Aminopropyl)morpholine) and [AEML]ZnCl4 ([AEML] = N‐(2‐Aminoethyl)morpholine). Both halides display blue fluorescence under 365 nm UV. Comparing with longer [APML]+, shorter [AEML]+ significantly enhances crystal rigidity and restrains non‐radiative scattering, boosting photoluminescence quantum yield (PLQY) from 18.89% to 22.41%. Synchronously, enhanced crystal rigidity significantly promotes the inter‐system crossing from singlet to triplet excited states. As a consequence, [AEML]ZnCl4 displays long‐lived green RTP property with millisecond scale lifetime in contrast to the blank RTP activity of [APML]ZnCl4. Comprehensive investigations demonstrate that the energy transfer between inorganic and organic components greatly changes the redistribution of singlet and triplet excited states, resulting in distinct phosphorescence activity. The different short‐lived blue fluorescence and long‐lived green phosphorescence provide a color‐time‐dual‐resolved luminescent tag with advanced applications in anti‐counterfeiting, etc. This work highlights a new structural engineering strategy to achieve controllable RTP affording a guide to rationally design RTP materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.