Abstract

In this study, we tested the use of cationic polymer derivatives of biocompatible hyaluronic acid (HA) as a delivery system of siRNA and antisense oligonucleotides. HA was modified with cationic polymer polyethylenimine (PEI). When compared with PEI alone, cationic PEI derivatives of HA (HA–PEI) provided increased cellular delivery of Small interfering RNA (siRNA) in B16F1, A549, HeLa, and Hep3B tumor cells. Indeed, more than 95% of the cells were positive for siRNA following its delivery with HA–PEI. A survivin-specific siRNA that was delivered using HA–PEI potently reduced the mRNA expression levels of the target gene in all of the cell lines. By contrast, survivin-specific siRNA delivered by PEI alone did not induce a significant reduction in mRNA levels. In green fluorescent protein (GFP)-expressing 293 T cells, a loss of GFP expression was evident in the cells that had been treated with GFP-specific siRNA and HA–PEI complex. The inhibition of target gene expression by antisense oligonucleotide G3139 was also enhanced after delivery with HA–PEI. Moreover, HA–PEI displayed lower cytotoxicity than PEI alone. These results suggest that HA–PEI could be further developed as biocompatible delivery systems of siRNA and antisense oligonucleotides for enhanced cellular uptake and inhibition of target gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.