Abstract
We previously reported that graft copolymers comprised of a cationic backbone and abundant grafts of hydrophilic dextran formed soluble interpolyelectrolyte complexes with anionic biopolymers and facilitated self-assembly and folding of the biopolymers, such as duplex formation of DNA and helical folding of a peptide. In this study, effects of the cationic graft copolymers on assembly of gold nanoparticles (AuNPs) and that of DNA on AuNPs were explored. While polylysine homopolymer caused aggregation of AuNP, the graft copolymer did not induce the aggregation as monitored by adsorption spectra. The highly-grafted copolymer at nano molar concentration was capable of suppressing AuNP aggregation induced by 3 M NaCl. Moreover, the copolymer did not cause aggregation of AuNPs whose surface were modified with oligonucleotides (ODN) having highly negative charges. In the presence of copolymer, melting temperature of DNA duplex formed between AuNP-ODN and its complementary ODN was increased about 10 °C, indicating that the copolymer enhanced stability of DNA duplex on the surface of AuNPs. It was concluded that the copolymer selectively promoted assembly of negatively charged DNA but inhibited aggregation of negatively charged AuNPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.