Abstract

[HCo(CO)x(bisphosphine)](BF4), x = 1-3, is a highly active hydroformylation catalyst system, especially for internal branched alkenes. In situ infrared spectroscopy (IR), electron paramagnetic resonance (EPR), and nuclear magnetic resonance studies support the proposed catalyst formulation. IR studies reveal the formation of a dicationic Co(I) paramagnetic CO-bridged dimer, [Co2(μ-CO)2(CO)(bisphosphine)2]2+, at lower temperatures formed from the reaction of two catalyst complexes via the elimination of H2. DFT studies indicate a dimer structure with square-pyramidal and tetrahedral cobalt centers. This monomer-dimer equilibrium is analogous to that seen for HCo(CO)4, reacting to eliminate H2 and form Co2(CO)8. EPR studies on the catalyst show a high-spin (S = 3/2) Co(II) complex. Reaction studies are presented that support the cationic Co(II) bisphosphine catalyst as the catalyst species present in this system and minimize the possible role of neutral Co(I) species, HCo(CO)4 or HCo(CO)3(phosphine), as catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.