Abstract
MnV N Schiff-base complexes incorporating a Na+ (1Na), K+ (1K), Ba2+ (1Ba), or Sr2+ (1Sr) ion in the ligand framework are reported. The MnVI/V reduction potentials for 1Na, 1K, 1Ba, and 1Sr are 0.591, 0.616, 0.805, and 0.880 V vs. Fe(C5 H5 )2 +/0 , respectively, exhibiting significant positive shifts compared to a MnN Schiff-base complex in the same primary coordination environment but with no associated alkali or alkaline earth metal ion (A, E1/2 =0.427 V vs. Fe(C5 H5 )2 +/0 ). One-electron oxidation of the MnV N complexes results in bimolecular coupling to form N2 with rates (k2 ) at 20 °C of 2166, 684, 857, and 99.7, an 87 m-1 s-1 for A, 1Na, 1K, 1Ba, and 1Sr respectively, following an inverse linear free energy relationship. Thus, increasing charge through proximal cations results in MnVI N complexes that are both more oxidizing and more stable to bimolecular coupling, a trend diametrically opposed to when complexes were modified by ligand substituents through inductive effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.