Abstract

The colored and high-saline effluents during the traditional dyeing process poses serious environmental challenge. In our study, an eco-friendly cationic cellulose nano-fiber/chitosan (CCNF/CS) binary versatile auxiliary was designed for the neutral salt-free dyeing and physical enhancement of paper by mixing with pulp simply. Profiting from the rich cationic binding sites of CCNF/CS (Charge density: 3749.67 μmol/g), under near neutral conditions (pH = 6.2), the maximum adsorption capacity of anionic GL (Direct fast turquoise blue GL) on paper with 0.5 % CCNF/CS reached 1865.06 mg/g with a desirable evenness (45.5 % and 92.1 % higher than that of CCNF and NaCl group, respectively), and the dye uptake was up to 97 %. The spontaneous adsorption behavior was aligned with the pseudo-second-order and Langmuir models, with a primary physical mechanism enhanced by chemical forces. The combination of strong electronic attraction, hydrogen bonding, and n-π stacking effects granted CCNF/CS an enhanced proficiency in anionic dye adsorption. In addition, the tensile strength of the resulting paper yarn with 0.5 % CCNF/CS increased to 52.47 MPa under the optimal parameters, deriving from the CCNF/CS-induced inter-fiber cohesion. Overall, our research provided a green promising approach for the innovative neutral salt-free dyeing and mechanical enhancement of paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.