Abstract

Periodontal bone defect is a common but longstanding healthcare issue since traditional bone grafts have limited functionalities in regulating complex intraoral microenvironments. Here, a porous cationic biopolymeric scaffold (CSC-g-nHAp) with microenvironment self-regulating ability was synthesized by chitosan-catechol chelating the Ca2+ of nanohydroxyapatite and bonding type I collagen. Chitosan-catechol's inherent antibacterial and antioxidant abilities endowed this scaffold with desirable abilities to eliminate periodontal pathogen infection and maintain homeostatic balances between free radical generation and elimination. Meanwhile, this scaffold promoted rat bone marrow stromal cells' osteogenic differentiation and achieved significant ectopic mineralization after 4 weeks of subcutaneous implantation in nude mice. Moreover, after 8 weeks of implantation in the rat critical-sized periodontal bone defect model, CSC-g-nHAp conferred 5.5-fold greater alveolar bone regeneration than the untreated group. This cationic biopolymeric scaffold could regulate the local microenvironment through the synergistic effects of its antibacterial, antioxidant, and osteoconductive activities to promote solid periodontal bone regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call