Abstract

A colorimetric paper sensor based on a cation-exchange strategy has been developed for the visual determination of heavy metal ions. Belt-like ZnSe nanoframes as colorimetric reagents were prepared from ZnSe·0.5N2H4 hybrid nanobelts as precursors via a hydrothermal method. With the decomposition and release of N2H4 ligands, the regular belt-like nanostructures of the precursors evolved into belt-like nanoframes, which consisted of numerous ZnSe nanocrystals. Inspired by the cation-exchange characteristic of chalcogenides, the as-prepared belt-like ZnSe nanoframes were employed to fabricate a colorimetric paper sensor for the detection of heavy metal ions. Owing to the color change arising from a composition change, the colorimetric paper was successfully applied to detect Ag+, Cu2+, and Hg2+ at room temperature. Depending on the color change and its intensity, heavy metal ions of Ag+, Cu2+, and Hg2+ can be individually identified and their concentrations can be determined. Particularly for Cu2+, its visually detected concentration can be down to 1 ppm. More importantly, the fabricated colorimetric paper sensor displays excellent anti-interference properties from various typical cations and anions. Considering its low cost and practicality, expectedly it can be used for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.