Abstract
Lipophilic azobenzene derivatives incorporating a monoazacrown or oligooxyethylene moiety were employed as a component of ion-conducting composite films containing a polyester elastomer and an alkali metal (Li+, Na+, K−) perchlorate. Composite films of monoaza-15-crown-5-containing azobenzene1 exhibited ionic conductivities following the order of Na > Li > K, reflecting the cation-binding selectivity of the 15-crown-5 ring. The ion-conducting behavior of composite films of1 is quite different from that of composite films containing a 1 : 1 mixture of an azobenzene derivative without any crown moiety andN-phenyl-monoaza-15-crown-5 (ionic conductivity order of Li > Na > K >). It was suggested that cation and anion migration is predominant in the LiClO4 and NaClO4 systems, respectively. The specific ion conduction can be attributed to ordered aggregation of1 induced by cation complex formation of its crown moiety. Azobenzene derivatives incorporating a monoaza-12-crown-4, monaza-18-crown-6, or oligooxyethylene moiety cannot afford such aggregate formation and specific ion-conduction as is seen in the1 system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inclusion Phenomena and Molecular Recognition in Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.