Abstract

It is now well established that mitochondria contain three antiporters that transport monovalent cations. A latent, allosterically regulated K+/H+ antiport appears to serve as a cation-extruding device that helps maintain mitochondrial volume homeostasis. An apparently unregulated Na+/H+ antiport keeps matrix [Na+] low and the Na(+)-gradient equal to the H(+)-gradient. A Na+/Ca2+ antiport provides a Ca(2+)-extruding mechanism that permits the mitochondrion to regulate matrix [Ca2+] by balancing Ca2+ efflux against influx on the Ca(2+)-uniport. All three antiports have well-defined physiological roles and their molecular properties and regulatory features are now being determined. Mitochondria also contain monovalent cation uniports, such as the recently described ATP- and glibenclamide-sensitive K+ channel and ruthenium red-sensitive uniports for Na+ and K+. A physiological role of such uniports has not been established and their properties are just beginning to be defined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call