Abstract
Through the high-resolution structure of the gramicidin A channel in lamellar phase lipids and the characterization of specific ion peptide interactions, fundamental principles for ion channel selectivity and conductance efficiency are illustrated with atomic resolution detail. Delocalized cation binding in the first turn of the helix reduces the unfavorable entropy contribution upon binding. Stepwise dehydration minimizes the energy barrier for cation entry and provides valence selectivity in this channel. Three or more water molecules in the monovalent cation binding site result in flexibility in the cation solvation environment causing weak cation size selectivity. Lack of cation induced structural modification avoids the formation of a significant energy barrier, thus permitting efficient cation transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.