Abstract

The catalytic behavior of oxide-supported metal oxide species depends on the nature of the support and the presence of co-catalysts. We use density functional theory (DFT) to explore the relationship between the structure and chemical behavior of vanadium oxide in light of its industrial use for the selective catalytic reduction of nitric oxide with ammonia (NO-SCR). The relative stabilities of dispersed VOX monomers, dimers, and long-chain oligomers on two model oxide support surfaces with similar structure but drastically different chemical behavior, α-Al2O3 (0001) and α-Fe2O3 (0001), are determined. The effect of added tungsten, known to promote NO-SCR, is also investigated on the relatively inert α-Al2O3 (0001) support. We find that the adsorption behavior of NH3, representing the first step of the NO-SCR reaction, depends strongly on the VOX local structure. Protonation of NH3 to NH4+ over surface hydroxyls is energetically favorable over VOX-WOX dimers and VOX oligomers, which are stabilized by the reducible α-Fe2O3 (0001) support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.