Abstract

We report the generation of gas-phase cation radicals of unusual nucleobases 5-aza-7-deazaguanine (P) and 6-amino-5-nitro-(1H)pyrid-2-one (Z) that have been used as building blocks of base-expanded (hachimoji) DNA. The cation radicals were generated by collision-induced intramolecular electron transfer and dissociation of ternary copper-terpyridine complexes. The cation radicals were characterized by deuterium labeling and tandem mass spectrometry including MS3 collision-induced dissociation, UV-vis photodissociation, and action spectroscopy. Vibronic absorption UV-vis spectra were calculated by time-dependent density functional theory (TD-DFT) and compared with the action spectra to unequivocally assign the most closely matching structures for the gas-phase cation radicals. Ab initio calculations up to the coupled clusters-complete basis set (CCSD(T)/CBS) level of theory were used to rank by energy the P and Z neutral molecules and cation-radical isomers and provided transition-state and dissociation energies. The 5-aza-7-deazaguanine cation radicals were determined to have the canonical N-1-H, 6-oxo structure (P1+•) that was the global energy minimum within this group of isomers. The Z cation radicals were found to have the 1H-pyrid-2-one structure (Z1+•). The formation of P1+• and Z1+• was shown to be controlled by the solution thermodynamics of the Cu-terpyridine complexes and the kinetics of their dissociations. We also report and compare CCSD(T)/CBS-calculated adiabatic recombination energies of cation radicals for the entire hachimoji set of eight nucleobases, P+• (7.92 eV), Z+• (8.51 eV), S+• (8.51 eV), B+• (7.76 eV), T+• (8.98 eV), C+• (8.62 eV), A+• (8.32 eV), and G+• (7.97 eV), to assess the thermodynamics of base-to-base electron transfer following random ionization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.